Gene Drive Technology: Where is the Future? (Bonus Episode)

Gene drives have the potential to revolutionize approaches to major public health, conservation, and agricultural problems. For instance, gene drives might one day prevent mosquitoes from spreading a variety of deadly diseases, including Zika virus, malaria, and others. A form of genetic modification, the technology works by causing a particular genetic element to spread through populations, thereby making it possible to change species in the wild. Despite the significant promise, caution is warranted, says a new report from the National Academies of Sciences, Engineering, and Medicine's Committee on Gene Drive Research. According to the committee, gene drives raise a variety of ecological and regulatory questions that have yet to be answered. For this episode of BioScience Talks, we're joined by committee co-chair Dr. James P. Collins of Arizona State University and committee member Dr. Joseph Travis of Florida State University. They fill us in on the specifics of the report and on the future of gene drives. Read the report and access related materials. Subscribe on iTunes. Subscribe on Stitcher.  

Gene drives have the potential to revolutionize approaches to major public health, conservation, and agricultural problems. For instance, gene drives might one day prevent mosquitoes from spreading a variety of deadly diseases, including Zika virus, malaria, and others. A form of genetic modification, the technology works by causing a particular genetic element to spread through populations, thereby making it possible to change species in the wild. Despite the significant promise, caution is warranted, says a new report from the National Academies of Sciences, Engineering, and Medicine's Committee on Gene Drive Research. According to the committee, gene drives raise a variety of ecological and regulatory questions that have yet to be answered. For this episode of BioScience Talks, we're joined by committee co-chair Dr. James P. Collins of Arizona State University and committee member Dr. Joseph Travis of Florida State University. They fill us in on the specifics of the report and on the future of gene drives.

 

© AIBS · All Rights Reserved